

Advancing with Top-Notch Asset Management Part II - Collaborations on Climate Change & Deterioration Modelling

Arnold Yuan, PhD, PEng

Professor & Chair

Department of Civil Engineering, TMU

Saidur Rahman, PhD, PEng Senior Engineer, City of Toronto & Adjunct Professor, TMU

The 2022 Municipal Engineers Association (MEA) Conference & Annual General Meeting, November 18, 2022

How to Lead the Asset Management Journey? A Municipal Engineer's Perspective

Arnold Yuan, PhD, PEng Professor & Chair Department of Civil Engineering Ryerson University Saidur Rahman, PhD, PEng Senior Engineer, City of Toronto & Adjunct Professor, Ryerson University

The 2021 Municipal Engineers Association (MEA) Conference & Annual General Meeting, November 24, 2021

Outline

- Context
 - Deterioration Modelling
 - Climate change
- Why is the current AM practice not the best?
- How can we improve it?
 - Engineering aspects
 - Organizational and leadership aspects
- Conclusions
- Q&A

Evidence-Based Decision Making

But what evidence is it based on?

Tempering the dragon –

Deterioration Modelling

subject to the data reality

Purposes of Deterioration Modelling

Condition prediction

Deterioration Rate

- Fixed effects
- Temporal dependence
- Spatial dependence

Uncertainties

- Random effects
- Temporal uncertainty
- Spatial uncertainty
- Residual uncertainties

Model Selection Flow Chart

Yuan XX (2017). *Principles and guidelines of deterioration modeling for water and wastewater assets*. Infrastructure Asset Management. 4(1): 19-35. DOI: 10.1680/jinam.16.00017.

General Assessment

- Many deterioration models were developed:
 - Mechanistic
 - Mechanistic-empirical
 - Empirical (data-driven)
- Within a long period to come, data-driven models will still play a major role in prediction.
 - Data format largely dictates the type of model to be used.
 - Time/duration or event history data
 - Condition data
 - "no data, no model; fuzzy data, fuzzy model" is untrue.

Prakash G, Yuan XX, Hazra B, Mizutani D (2020). A review of degradation models for prognosis of critical civil infrastructure. *Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems*. 4(2): 021005.

Scenario & Solution

- ✤ A large number of small municipalities
- Each trying to develop an implementable AMP
- Each has limited asset condition data
- Each has sound inventory and MRR records
- Different inspection methods might have been used
- Materials, environmental & geotechnical conditions may be different

Our solution: empirical Bayes approach

Missing Data due to unrecorded event history

Lin PY, Yuan XX (2019). A two-time-scale point process model of water main breaks for infrastructure asset management. Water Research. 150: 296-309. https://doi.org/10.1016/j.watres.2018.11.066

Missing Data due to loss of maintenance history

Data format: X(s) = i, $\tau_1, ..., \tau_k$, X(t) = k

Lin PY , **Yuan XX**, Tovilla E (2019). Integrative modeling of performance deterioration and maintenance effectiveness for infrastructure assets with missing condition data. *Computer-Aided Civil and Infrastructure Engineering*. 34(8): 677-695.

The value of data

Role and value of data

- Do we really need to collect asset performance data every year?
- Do we really need to inspect 100% of the assets in the network?
- Where is the sweet spots of 'data economics'?

Yuan XX, Higo E, Pandey MD (2021). Estimation of the value of an inspection and maintenance program: A Bayesian gamma process model. *Reliability Engineering & System Safety*, 216: 107912 <u>https://doi.org/10.1016/j.ress.2021.107912</u>

Framework of Vol analysis

Vol = LCC (without data) - LCC(with data)

- Three considerations:
 - With and without data, the maintenance policies can be different.
 - Age-based replacement policy
 - Condition-based maintenance/rehabilitation/replacement policy
 - Dynamic MRR policy
 - Different maintenance policies have different efficiency.
 - Data may reduce the epistemic uncertainty of deterioration model.

Example

Zhang J, Yuan XX (2021). Stochastic modelling of maintenance flexibility for the Value for Money assessment of PPP projects. *Construction Management and Economics*. 39(2): 173– 191, DOI: 10.1080/01446193.2020.1855666

Value of Information

Value of Information from known condition state X(t)

Results to be published

Value of Information

Value of Information from known condition state X(t) & reduction in epistemic uncertainty

Results to be published

Data Sharing and Collaborative Deterioration Modelling

- TMU was commissioned by INFC to conduct a study to develop an online platform to share asset performance data and conduct online collaborative deterioration modelling.
- The focus is placed on
 - Bridges
 - Pavements
 - Sewer pipes
- Main features:
 - Standardization of data collection, performance evaluation, and LOS reporting
 - A secure data-sharing mechanism
 - A collaborative deterioration modelling and updating framework
 - Supporting small and remote communities

Collaborations on Climate Change

- Eco-efficient construction materials & MRR technologies
- Integration of adaption and mitigation into AM plans
- Carbon budgeting and allocation
- ESG-based decision making
- Use of deep reinforcement learning
- Flexible planning under deep uncertainties

Conclusions & Outlooks

A Maturity Process of IAM

